Stealthy Imitation: Reward-guided Environment-free Policy Stealing

1Saarland University, 2Bosch Center for AI, 3CISPA Helmholtz Center for Information Security
MY ALT TEXT

Traditional data-free model extraction fails in control systems due to the unknown environment with varying sensors. Stealthy Imitation effectively extracts policies by stealing the environment first.

Abstract

Deep reinforcement learning policies, which are integral to modern control systems, represent valuable intellectual property. The development of these policies demands considerable resources, such as domain expertise, simulation fidelity, and real-world validation. These policies are potentially vulnerable to model stealing attacks, which aim to replicate their functionality using only black-box access. In this paper, we propose Stealthy Imitation, the first attack designed to steal policies without access to the environment or knowledge of the input range. This setup has not been considered by previous model stealing methods. Lacking access to the victim's input states distribution, Stealthy Imitation fits a reward model that allows to approximate it. We show that the victim policy is harder to imitate when the distribution of the attack queries matches that of the victim. We evaluate our approach across diverse, high-dimensional control tasks and consistently outperform prior data-free approaches adapted for policy stealing. Lastly, we propose a countermeasure that significantly diminishes the effectiveness of the attack.

A comparison of the extracted policy between our method and DFME.

BibTeX

@inproceedings{zhuang2024stealthy,
        title={Stealthy Imitation: Reward-guided Environment-free Policy Stealing},
        author={Zhuang, Zhixiong and Nicolae, Maria-Irina and Fritz, Mario},
        booktitle={International Conference on Machine Learning (ICML)},
        year={2024}
}